Functional graph trees for circulants with linear boolean functions at the vertices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).

The functional graph of a discrete dynamic system being a model of regulatory gene network circuit is defined as the graph of the transformation Af, : F2n ^ F2n where Af, (v ,v , ... ,V ) = (щ,щ,... ,u,n-i), Ui = Vi-i + Vi + v+, i = 0,1,...,n - 1, V-1 = Vn-1, Vn = V0. The structure of this graph is completely described.
Download file
Counter downloads: 306
  • Title Functional graph trees for circulants with linear boolean functions at the vertices
  • Headline Functional graph trees for circulants with linear boolean functions at the vertices
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 6 (Приложение)
  • Date:
  • DOI
Keywords
дискретная динамическая система, циркулянт, генная сеть, регуляторный контур, функциональный граф, discrete dynamical system, circulant, gene network, regulatory circuit, functional graph
Authors
References
Харари Ф. Теория графов. М.: УРСС, 2003.
Евдокимов A. A, Пережогин A. Л. Дискретные динамические системы циркулянтного типа с линейными функциями в вершинах сети // Дискретный анализ и исследование операций. 2011. T.3. №3. С. 39-48.
 Functional graph trees for circulants with linear boolean functions at the vertices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Functional graph trees for circulants with linear boolean functions at the vertices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Download full-text version
Counter downloads: 1888
Download file