Cryptographic generators constructed of control and generating blocks are investigated. Essential dependence of block elements on all signs of generator initial state is the useful property of such generators. The notion of a local primitiveness for a nonnegative matrix or graph is introduced to study such dependences. The conditions for matrix local primitiveness are obtained. A relation between the local primitiveness characteristics of matrices (graphs) of particular classes and parameters of generators is established.
Download file
Counter downloads: 320
- Title On local primitiveness of graphs and nonnega-tive matrices
- Headline On local primitiveness of graphs and nonnega-tive matrices
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 6 (Приложение)
- Date:
- DOI
Keywords
экспонент, локальный экспонент, примитивная матрица, примитивный граф, локальная примитивность, exponent, local exponent, primitive matrix, primitive graph, local primitive-nessAuthors
References
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010.
Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. М.: ТВП, 2000.
Фомичев В. М. Оценки экспонентов примитивных графов // Прикладная дискретная математика. 2011. №2(12). С. 101-112.

On local primitiveness of graphs and nonnega-tive matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 6 (Приложение).
Download full-text version
Download fileCounter downloads: 1888