Problems of finding inverse for a permutation polynomial over the ring Z pk for prime p and any k > 1 are studied. Necessary and sufficient conditions for two permutation polynomials to be inverse polynomials modulo prime power are found. Given a known inverse polynomial modulo p 2, a formula for inverse polynomial modulo p k is pointed. Given a pair of inverse polynomials modulo p k, a method for constructing other such pairs is proposed.
Download file
Counter downloads: 85
- Title Permutation polynomials over residue class rings
- Headline Permutation polynomials over residue class rings
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(22)
- Date:
- DOI
Keywords
polynomial permutations, residue class rings, permutation polynomials, полиномиальные перестановки, примарные кольца, перестановочные многочленыAuthors
References
Singh R. P. and Maity S. Permutation polynomials modulo pn // eprint.iacr.org/2009/ 393.pdf. 2009.
Карпов А. В. Обращение перестановочного многочлена над примарным кольцом // Меж-дунар. конф. «Алгебра и логика: теория и приложения». Тез. докл. Красноярск: СФУ, 2013. С. 60-61.
Li S. Permutation polynomials modulo m // arxiv.org/pdf/math/0509523.pdf. February 2008.
Rivest R. L. Permutation polynomials modulo 2w // Finite Fields and Their Applications. 2001. No. 7. P. 287-292.
Frisch S. and Krenn D. Sylow p-groups of polynomial permutations on the integers mod pn // arxiv.org/abs/1112.1228. December 2011.
Varadharajan V. Cryptosystems based on permutation polynomials // Intern. J. Computer Math. 1988. V. 23. Iss. 3-4. P. 237-250.
Sun J. and Takeshita O. Y. Interleavers for turbo codes using permutation polynomials over integer rings //IEEE Trans. Inform. Theory. 2005. V. 51. Iss. 1. P. 101-119.
Ryu J. and Takeshita O. Y. On quadratic inverses for quadratic permutation polynomials over integer rings // IEEE Trans. Inform. Theory. 2006. V. 52. Iss.3. P. 1254-1260.
Wu B. and Liu Z. The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2 // arxiv.org/abs/1301.0070. January 2013.
Diaz-Vargas J., Rubio-Barrios C. J., Sozaya-Chan J.A., and Tapia-Recillas H. Self-invertible permutation polynomials over Zm // Intern. J. Algebra. 2011. V. 5. No. 23. P. 1135-1153.
Akbary A. and Wang Q. On some permutation polynomials over finite fields // Intern. J. Math. Math. Sci. 2005. V.2005. Iss. 16. P. 2631-2640.
Мещанинов Д. Г. Метод построения полиномов для функций k-значной логики // Дискретная математика. 1995. Т. 7. №3. С. 48-60.
Caceres A. and Colon-Reyes O. Some criteria for permutation binomials. Preprint. University of Puerto Rico at Humacao, 1997.
Dickson L. E. History of the Theory of Numbers. Carnegie Institute, Washington, D. C., 1923. V. 3.
Лидл Р., Нидеррайтер Г. Конечные поля. Т. 1, 2. М.: Мир, 1988.
Hermite С. Sur les fonctions de sept lettres // C. R. Acad. Sci. Paris. 1863. V. 57. P. 750-757.
Permutation polynomials over residue class rings | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2013. № 4(22).
Download full-text version
Download fileCounter downloads: 340