The implementation of the parallel orthogonalization algorithms in the shortest integer lattices basis problem | Applied Discrete Mathematics. Supplement. 2012. № 5.

The implementation of the parallel orthogonalization algorithms in the shortest integer lattices basis problem

Download file
Counter downloads: 312

Keywords

Authors

NameOrganizationE-mail
Usatyuk V.S.Bratsk State UniversityL@Lcrypto.com
Всего: 1

References

SchnorrC.P. and Euchner M. Lattice basis reduction: Improved practical algorithms and solving subset Sum Problems // Fundamentals of Computation Theory. Gosen, Germany, 1991. P. 68-85.
Longley J. W. Modified Gram - Schmidt process vs. classical Gram - Schmidt // Commun. Stat. - Simul. Comp. 1981. No. 10(5). P. 517-527.
Press W. H., Teukolsky S. A., and Vetterling W. T. Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press, 2007. 1262 p.
http://goo.gl/85KwD - CUDA Toolkit 4.1 CUBLAS Library. January 2012. 99 p.
http://www.lcrypto.com/lsolv - Программы для приведения базиса решёток. 2012.
http://www.latticechallenge.org/ - Lattice SVP and SBP challenge. 2011.
 The implementation of the parallel orthogonalization algorithms in the shortest integer lattices basis problem | Applied Discrete Mathematics. Supplement. 2012. № 5.

The implementation of the parallel orthogonalization algorithms in the shortest integer lattices basis problem | Applied Discrete Mathematics. Supplement. 2012. № 5.