Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring | Applied Discrete Mathematics. Supplement. 2014. № 7.

Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring

There are no polynomials with full cycle over the Galois ring. The maximal length of cycle of polynomial mapping over the Galois ring equals q(q - 1)p , where q - cardinality of ring and p - its characteristic. In this work, an algorithm is presented for constructing the system of representatives of all maximal length cycles of a polynomial substitution over the Galois ring. Let an elementary operation be the production in the Galois ring, then the complexity of the algorithm equals O(1q ) elementary operations as n tends to infinity, where I is the degree of the polynomial.

Download file
Counter downloads: 328

Keywords

кольца Галуа, нелинейные рекуррентные последовательности, nonlinear recurrent sequences, Galois ring

Authors

NameOrganizationE-mail
Ermilov D. M.wwwermilov@gmail.com
Всего: 1

References

Ермилов Д. М., Козлитин О. А. Цикловая структура полиномиального генератора над кольцом Галуа // Математические вопросы криптографии. 2013. Т. 4. Вып. 1. С. 27-57.
Ермилов Д. М. О цикловой структуре полиномиальных преобразований колец Галуа максимального периода // Обозрение прикл. и промышл. матем. 2013. Т. 20. Вып. 3.
 Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring | Applied Discrete Mathematics. Supplement. 2014. № 7.

Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring | Applied Discrete Mathematics. Supplement. 2014. № 7.