Quantitative steganalysis using binary classifier | Applied Discrete Mathematics. Supplement. 2014. № 7.

Quantitative steganalysis using binary classifier

In this paper, the problem of determining secret message length using binary steganalytic classifier is researched. It is assumed that a steganalyst is able to cut a large stego image into k smaller images and to apply the binary classification to every one of them. According to the information-theoretic approach to the steganographic security, a steganalyst's expected error calculation formula is derived. Determining the optimal choice of k depended on the properties of a binary classifier and a given image is formulated as a minimization problem. Presented approach can be used to estimate impact of various parameters on stegosystem security against quantitative steganalysis.

Download file
Counter downloads: 379

Keywords

количественный стегоанализ, бинарная классификация, quantitative steganalysis, binary classification

Authors

NameOrganizationE-mail
Razinkov E.V.Razinkov@steganography.ru
Almeev A.N.azat.almeev@gmail.com
Всего: 2

References

Kodovsky J. and Fridrich J. Steganalysis of JPEG images using rich models // Proc. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XIV. San Francisco, CA, January 22-26, 2012. V.8303. P. 0A 1-13.
Kodovsky J., Fridrich J. Quantitative steganalysis using rich models //Proc. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XV. San Francisco, CA, February 3-7, 2013. V. 8665. DOI: 10.1117/12.2001563.
Cachin C. An information-theoretic model for steganography // LNCS. 1998. V. 1525. P. 306-318.
Ker A. et al. Moving steganography and steganalysis from the laboratory into the real world // 1st Information Hiding and Multimedia Security Workshop. Montpellier, France, June 17-19, 2013. P. 45-58.
Filler T. and Fridrich J. Fisher information determines capacity of e-secure steganography // LNCS. 2009. V. 5806. P. 31-47.
 Quantitative steganalysis using binary classifier | Applied Discrete Mathematics. Supplement. 2014. № 7.

Quantitative steganalysis using binary classifier | Applied Discrete Mathematics. Supplement. 2014. № 7.