The sperner property for polygonal graphs
A finite partially ordered set (poset) is said to have the Sperner property if at least one of its maximum antichains is formed from elements of the same hight. A polygonal graph is a directed acyclic graph derived from a circuit by some orientation of its edges. The reachability relation of a polygonal graph is a partial order. A criterion is presented for posets associated with polygonal graphs to have the Sperner property.
Download file
Counter downloads: 328
Keywords
упорядоченное множество, шпернерово свойство, многоугольный граф, цепь, зигзаг, partially ordered set, Sperner property, polygonal graph, path, zigzagAuthors
Name | Organization | |
Salii V. N. | SaliiVN@info.sgu.ru |
References
Sperner E. Ein Satz uber Untermengen einer endlichen Menge // Math. Zeitschrift. 1928. V. 27. No. 1. S. 544-548.
Мешалкин Л. Д. Обобщение теоремы Шпернера о числе подмножеств конечного множества // Теория вероятностей и её применения. 1963. Т. 8. №2. С. 219-220.
Stanley E. P. Weyl groups, the hard Lefschetz theorem and the Sperner property // SIAM J. Alg. Discr. Math. 1980. V. 1. No. 2. P. 168-184.
Wang J. Proof of a conjecture on the Sperner property of the subgroup lattice of an abelian p-group // Annals Comb. 1999. V.2. No. 1. P. 85-101.
Jacobson M. S., Kezdy A. E., and Seif S. The poset of connected induced subgraphs of a graph need not be Sperner // Order. 1995. V. 12. No3. P.315-318.
Maeno T. and Numata Y. Sperner property, matroids and finite-dimensional Gorenstein algebras // Contemp. Math. 2012. V.280. No. 1. P. 73-83.
Богомолов А. М., Салий В. Н. Алгебраические основы теории дискретных систем. М.: Наука, 1997.
Салий В. Н. Упорядоченное множество связных частей многоугольного графа // Изв. Сарат. ун-та. Нов. cер. Сер. Математика. Механика. Информатика. 2013. Т. 13. №2(ч. 2). С.44-51.
