Generalized 312-avoiding gs-permu-tations and lehmer's transformation
Lehmer's transformation of the GS-permutations introduced by I. Gessel and R. Stanley is considered. It is proved that the iteration of Lehmer's transformation of all GS-permutations of order r ^ 1 leads to the set of all 312-avoiding GS-permutations of order r and thus gives new characterization of these permutations. It is shown that the statistics rise and imal on the set of the 312-avoiding GS-permutations of order r have the same distribution. A simple relation connecting the inverses of the generating function of the Narayana polynomials of order r and the exponential generating function of Euler's polynomials of order r is found.
Keywords
ГС-перестановки, преобразование Лемера, 312-избегающие ГС-перестановки, статистики rise и imal, многочлены Эйлера, многочлены На-раяны, производящая функция, обратная функция, GS-permutations, Lehmer's transformation, 312-avoiding GS-permutations, statistics rise and imal, Euler's polynomials, Narayana polynomials, generating function, inverse functionAuthors
Name | Organization | |
Bondarenko L. N. | Moscow University. S. Yu. Witte, a branch in Sergiev Posad | leobond5@mail.ru |
Sharapova M. L. | Lomonosov Moscow State University | msharapova@list.ru |
References
