A bent function construction by a bent function that is affine on several cosets of a linear subspace | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/16

A bent function construction by a bent function that is affine on several cosets of a linear subspace

A construction of bent functions by a given bent function is introduced. Let f be a bent function in 2k variables and, for some w E F^fc, the bent function f (x) ф (w,x) is constant on each of distinct cosets C1,..., C22k-2t of some t-dimensional linear subspace of F|fc, where 0 ^ t ^ k. Then f ф Indc1u...uc22fc-2t is a bent function too. This is a generalization of the construction of bent functions at the minimal possible Hamming distance from a given bent function. For t = 2 and for a quadratic bent function f, a simplification of the construction is done. It is proved that the construction generates not more than t-1 2* П (22k-2i - 1)/(2t-i - 1) bent functions for an arbitrary bent function f and a fixed t. i=0 For t ^ 2, the bound is attainable if and only if f is quadratic.

Download file
Counter downloads: 176

Keywords

булевы функции, бент-функции, минимальное расстояние, аффинность, Boolean functions, bent functions, the minimal distance, affinity

Authors

NameOrganizationE-mail
Kolomeec N. A.Institute of Mathematics them. S. L. Sobolev, SB RASnkolomeec@gmail.com
Всего: 1

References

Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
Логачев О. А., Сальников А. А., Смышляев С. В., Ященко В. В. Булевы функции в теории кодирования и криптологии. 2-е изд. М.: МЦНМО, 2012. 584с.
Tokareva N. N. Bent Functions, Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
Carlet C. Two new classes of bent functions // LNCS. 1994. V. 765. P. 77-101.
Коломеец Н.А. Верхняя оценка числа бент-функций на расстоянии 2k от произвольной бент-функции от 2k переменных // Прикладная дискретная математика. 2014. №3. С.28-39. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000487973
Ященко В. В. О критерии распространения для булевых функций и о бент-функциях // Проблемы передачи информации. 1997. Т. 33. №1. С. 75-86.
McFarland R. L. A family of difference sets in non-cyclic groups // J. Combin. Theory. Ser. A. 1973. V. 15. P. 1-10.
 A bent function construction by a bent function that is affine on several cosets of a linear subspace | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/16

A bent function construction by a bent function that is affine on several cosets of a linear subspace | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/16