On the number of spanning trees in labeled cactus
Let t(Can(n2,n3,...)) be a number of spanning trees in a labelled cactus with n vertices, n2 be a number of its edge-blocks, n2 ^ 0, ni be a number of its polygon-blocks with i vertices, ni ^ 0, i ^ 3, and k be a number of cycles in this cactus. We deduce the formula t(Can(n2, n3, ...)) = П ini, n ^ 2, where n - 1 = n2 + 2n3 +... As consequence, we ob- (1 V (1 V tain inequalities t(Can(n2 ,n3,...)) -(n + k - n2 - 1) j -(n + k - 1) j ^ en 1.
Download file
Counter downloads: 187
Keywords
остовное дерево, кактус, перечисление, spanning tree, cactus, enumerationAuthors
Name | Organization | |
Voblyi V. A. | Bauman Moscow State Technical University | vitvobl@yandex.ru |
References
Харари Ф., Палмер Э. Перечисление графов. М.: Мир, 1977. 324с.
Myrvold W. Reliable network synthesis: some recent developments // Proc. 8th Int. Conf. Graph Theory, Combinatorics, Algorithms, Appl. 1999. V. 2. P. 650-660.
Зыков Ф. Основы теории графов. М.: Наука, ГРФМЛ, 1987. 382 с.
Татт Ф. Теория графов. М.: Мир, 1988. 424 с.
Харари Ф. Теория графов. М.: Мир, 1973. 301с.
