Vectorial 2-to-1 functions as subfunctions of apn permutations
This work concerns the problem of APN permutations existence for even dimensions. We consider the differential properties of (n - 1)-subfunctions of APN permutations. It is proved that every (n - 1)-subfunction of an APN permutation can be derived using special symbol sequences. These results allow us to propose an algorithm for constructing APN permutations through 2-to-1 functions and corresponding coordinate Boolean functions. A lower bound for the number of such Boolean functions is obtained.
Download file
Counter downloads: 207
Keywords
2-to-1 function, permutation, bijective function, vectorial Boolean function, APN function, 2-в-1 функция, перестановка, APN-функция, взаимно однозначная функция, векторная булева функцияAuthors
Name | Organization | |
Idrisova V.A. | Sobolev Institute of Mathematics; Novosibirsk State University | vitkup@math.nsc.ru |
References
Idrisova V.A. On an algorithm generating 2-to-1 APN functionsand its applications to "the big APN problem" // Cryptography and Communications. 2018. Published online.
Идрисова В. А. О построении APN-функций специального вида и их связи с взаимно однозначными APN-функциями // Прикладная дискретная математика. Приложение. 2017. № 10. С. 36-38.
Carlet C. Open questions on nonlinearity and on APN functions // LNCS. 2015. V. 9061. P. 83-107.
McQuistan M. T., Wolfe A. J., Browning K. A., and Dillon J. F. An apn permutation in dimension six // Amer. Math. Soc. 2010. No. 518. P. 33-42.
Blondeau C. and Nyberg K. Perfect nonlinear functions and cryptography // Fields and Their Appl. 2015. V. 32. P. 120-147.
Тужилин М. Э. Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. №3(5). С. 14-20.
Pott A. Almost perfect and planar functions // Des. Codes Cryptography. 2016. No. 78(1). P. 141-195.
Глухов М. М. О приближении дискретных функций линейными функциями // Математические вопросы криптографии. 2016. Т. 7. №4. С. 29-50.
Nyberg K. Differentily uniform mappings for cryptography // Eurocrypt 1993. LNCS. 1994. V. 765. P. 55-64.
