Constructions of vectorial boolean functions with maximum component algebraic immunity
Matrices A have been found so that the function F : Fn ^ Fn of the form F(x) = (f (x), f (Ax), ..., f (An-1x)) where f is the Dalai function in n = 3, 4 variables has the maximal component algebraic immunity. There are no vectorial Boolean functions F : F^ ^ F2 of the form F(x) = (f (x), f (Ax), f (A2x)), f (A3x), f (A4x)) with the maximal component algebraic immunity where f is the Dalai function in 5 variables. Let f be a Boolean function with the maximal algebraic immunity in an odd number n of variables and A be a non-degenerate matrix n x n. Then the function g(x) = f (x) + f (Ax) has the maximal algebraic immunity only if exactly half of the set supp(f) remains in the set supp(f) after the action of the linear transformation A.
Keywords
component algebraic immunity, algebraic immunity, vectorial Boolean functions, компонентная алгебраическая иммунность, векторные булевы функции, алгебраическая иммунностьAuthors
Name | Organization | |
Miloserdov A. V. | Novosibirsk State University | amiloserdov6@gmail.com |
References
