On nonabelian key addition groups and markovian block ciphers | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/25

On nonabelian key addition groups and markovian block ciphers

In this paper, (X, *) is an arbitrary key addition group, W = {W0,..., Wr-1} is a partition of X, S(X) is the symmetric group on X. In 1991, X. Lai, J. L. Massey and S. Murphy introduced markovian block ciphers. We investigate a markovian block cipher Q(*,b) where l is the round number, b is a permutation on X, g : X2 - X is the round function defined by g : (x, k) - b(x * k). In the previous paper, we introduced *W-markovian block ciphers, which are a generalization of markovian ciphers, and *W-markovian transformations. The block cipher Q(*,b) is *W-markovian iff the permutation b is *W-markovian. We have proved that if g preserves W, then G = (b, X*) is an imprimitive group and W is an imprimitivity system where X* is the right permutation representation of (X, *). Moreover, if G is imprimitive, then there exists a canonical homomorphism : G - S({0,..., r - 1}). We have proved that in the case (W0, *) < (X, *), the cipher C(*, b) is *W-markovian iff there exists a homomorphism . For cryptographic applications, we are interested in groups of order 2m. In this paper, we consider all four nonabelian groups of order 2m having a cyclic subgroup of index 2. These four groups include a dihedral group and a generalized quaternion group. For all four groups, we have described *W-markovian permutations such that W is the right coset space (X : Wo = W), but (Wo, *) ^ (X, *).

Download file
Counter downloads: 201

Keywords

difference distribution table, imprimitive group, homomorphism, dihedral group, generalized quaternion group, markovian cipher, матрица разностей переходов, импримитивная группа, обобщённая группа кватернионов, группа диэдра, гомоморфизм, марковский алгоритм блочного шифрования

Authors

NameOrganizationE-mail
Pogorelov B. A.Academy of cryptography of the Russian Federation
Pudovkina M. A.Bauman Moscow State Technical Universitymaricap@rambler.ru
Всего: 2

References

Lai X., Massey J. L., and Murphy S. Markov ciphers and differential cryptanalysis // EUROCRYPT 1991. LNCS. 1991. V. 547. P. 17-38.
Погорелов Б. А., Пудовкина М. А. Разбиения на биграммах и марковость алгоритмов блочного шифрования // Математические вопросы криптографии. 2017. Т. 8. №1. С. 107142.
Холл М. Теория групп. М.: ИЛ, 1962. 468с.
 On nonabelian key addition groups and markovian block ciphers | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/25

On nonabelian key addition groups and markovian block ciphers | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/25