On integral distinguishers of block ciphers based on generalized feistel schemes | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/27

On integral distinguishers of block ciphers based on generalized feistel schemes

In 2002, L. Knudsen and D. Wagner introduced the integral cryptanalysis technique which has become the powerful tool to assess the security of block ciphers such as AES, PRESENT, DES, SIMON 32, CAMELLIA, KHAZAD, RECTANGLE, PRINCE, HIGHT. The main idea of the technique is based on construction of an integral distinguisher, which is used to recover some key bits. Many block ciphers are based on different generalizations of the Feistel scheme. In this paper, we have built the 3-round integral distinguisher for the PI-CARO block cipher, which is based on a generalized Feistel scheme. Non-bijective PICARO s-boxes as well as the expanding matrix are studied to check a propagation of the integral properties. We have also constructed integral distinguishers for some generalized Feistel schemes.

Download file
Counter downloads: 191

Keywords

non-bijective s-boxes, generalized Feistel scheme, PICARO block cipher, integral cryptanalysis, небиективные s-боксы, обобщённая схема Фейстеля, алгоритм блочного шифрования PICARO, интегральный метод

Authors

NameOrganizationE-mail
Sorokin M.A.National Research Nuclear University "MEPhI"sorokin.michael.96@yandex.ru
Pudovkina M. A.Bauman Moscow State Technical Universitymaricap@rambler.ru
Всего: 2

References

Nyberg K. Generalized Feistel networks // ASIACRYPT 1996. LNCS. 1996. V. 1163. P. 90-104.
Hoang V. T. and Rogaway P. On generalized Feistel networks // CRYPTO 2010. LNCS. 2010. V. 6223. P. 613-630.
Nachef V., Volte E., and Patarin J. Differential attacks on generalized Feistel schemes // CANS 2013. LNCS. 2013. V.8257. P. 1-19.
Piret G., Roche T., and Carlet C. PICARO - a block cipher allowing efficient higher-order side-channel resistance // ACNS 2012. LNCS. 2012. V. 7341. P. 311-328.
Сачков В. Н. Введение в комбинаторные методы дискретной математики. М.: Наука, 1982. 384 с.
Knudsen L. and Wagner D. Integral cryptanalysis // FSE 2002. LNCS. 2002. V.2365. P. 112-127.
Todo Y. Structural evaluation by generalized integral property // EUROCRYPT 2015. LNCS. 2015. V. 9056. P. 287-314.
Biryukov A. and Shamir A. Structural cryptanalysis of SASAS // EUROCRYPT 2001. LNCS. 2001. V. 2045. P. 394-405.
 On integral distinguishers of block ciphers based on generalized feistel schemes | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/27

On integral distinguishers of block ciphers based on generalized feistel schemes | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/27