Calculation of 3-torsion ideal for some class of hyperelliptic curves
In the paper, we consider hyperelliptic curves of genus two defined by the Dickson polynomials. For such curves, we calculate the 3-torsion ideal, namely we obtain the four generators of this ideal by using the Mumford - Cantor representation for the 3-torsion divisor and by using of в- and ^-functions.
Download file
Counter downloads: 154
Keywords
гиперэллиптическая кривая, многочлен Диксона, идеал I-кручения, дивизор l-кручения, модулярное уравнение, hyperelliptic curve, Dickson polynomial, l-torsion ideal, l-torsion divisor, modular equationAuthors
Name | Organization | |
Malygina E. S. | I. Kant Baltic Federal University | Ekkat@inbox.ru |
References
Cohen H. and Frey G. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall/CRC, 2005.
LidlR., Mullen G.L., and Turnwald G. Dickson Polynomials. Chapman and Hall/CRC, 1993.
Novoselov S. A. Counting points on hyperelliptic curves of type y2 = x2g+1 + ax9+1 + bx. arXiv: 1902.05992. 2019.
Malygina E. S. and Novoselov S. A. Division polynomials for hyperelliptic curves defined by Dickson polynomials // Proc. 8th Workshop on Current Trends in Cryptology. Svetlogorsk, Kaliningrad region, June 4-7, 2019. https://ctcrypt.ru/ematerials2019.
Hindry M. and Silverman J. Diophantine Geometry. An Introduction. Graduate Texts in Mathematics. V. 201. Springer Verlag, 2000.
Kampkotter W. Explizite Gleichungen fur Jacobische Varietatenhyperelliptisher Rurven.Ph. D. Thesis, Universitat Gesamthochschule Essen, 1991.

Calculation of 3-torsion ideal for some class of hyperelliptic curves | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/3
Download full-text version
Counter downloads: 2700