Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/9

Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach

To generalize the matrix-graph approach to examination of nonlinearity characteristics of vector spaces transformations proposed by V. M. Fomichev, we propose mathematical tools for local nonlinearity of transformations. Let G = {0,1, 2} be multiplicative semigroup where a0 = 0 for each a £ G, ab = max {a, b} for each a,b = 0. Ternary matrix (matrix over G) is called a-matrix, a £ П (2) = {(2c); (2s); (2sc); (2)}, if all its lines ((2s)-matrix), columns ((2c)-matrix) or lines and columns ((2sc)-matrix) contain 2 or if all its elements are equal to 2 ((2)-matrix). Set of all ternary matrices M of order n whose I x J-submatrices are a-matrices is denoted МП (I x J), I, J С {1,..., n}. For the set of ternary matrices, multiplication operation is defined. If A = (ai,j), B = (bi,j), then AB = C = (ci,j), where ci,j = max {ai,ib1,j,..., ai,nbn,j} and for all i,j multiplication is executed in semigroup G. Matrix M is called I x J-a-primitive if there is such 7 £ N that Mf £ M^ (I x J) for all natural t ^ 7, a £ П(2). The smallest such 7 is denoted I x J-a-expM and called I x J-a-exponent of matrix M. There is bijective mapping between the set of ternary matrices of order n and the set of labeled digraphs with n vertices and with elements from G as labels, so the definitions of Ix J-a-primitivity and I x J-a-exponent can be transferred to digraphs. Some sufficient conditions for I x J-a-exponent of a matrix to be the smallest its power, raised to which I x J-submatrix is a-matrix, a £ П (2), have been established. For I = {i}, J = {j} upper estimates of I x J-a-exponents have been obtained for some classes of labeled digraphs, particularly, for digraph in which a path from i to j goes through primitive component of strong connectivity.

Download file
Counter downloads: 120

Keywords

матрично-графовый подход, троичная матрица, помеченный орграф, локальная нелинейность, локальный а-экспонент, matrix-graph approach, ternary matrix, labeled digraph, local nonlinearity, local a-exponent

Authors

NameOrganizationE-mail
Fomichev V.M.Financial University under the Government of the Russian Federation; NRNU MEPhI; FITS IU RASfomichev.2016@yandex.ru
Bobrov V. M.NRNU MEPhI
Всего: 2

References

Фомичёв В. М. О производительности некоторых итеративных алгоритмов блочного шифрования из класса WBC // New Trends in Coding Systems and Techniques. LDN: Intech Publishing, 2019. P. 14.
Кяжин С. Н. Локальная примитивность графов и неотрицательных матриц // Прикладная дискретная математика. 2014. №3(25). C. 68-80.
 Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/9

Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/9

Download full-text version
Counter downloads: 2700