Hardware implementation of one class of 8-bit permutations
The paper studies the issues of implementation of one class of S-Boxes on FPGA and ASIC and compares them with the implementation of arbitrary mappings V8 M V8. The way of implementation of arbitrary S-Box is studied. It's shown that any S-Box over V8 can be implemented using 40 LUTs (812 GE). For one class of S-Boxes over V8 with high cryptographic properties, the possibility of their implementation using 19 LUTs (147 GE) is shown.
Download file
Counter downloads: 148
Keywords
S-Box, подстановка, ПЛИС, СБИС, S-Box, permutation, FPGA, ASICAuthors
Name | Organization | |
Fomin D. D. | National Research University Higher School of Economics | dfomin@hse.ru |
Trifonov D. I. | “Cryptographic information security” | d.arlekino@gmail.com |
References
Shannon C. Communication theory of secrecy systems. // Bell System Technical J. 1949. No. 28. P. 656-715. f (x1,x2,x3,.. ,xg) = <
Rebeiro C., Selvakumar D., and Devi A. S. L. Bitslice implementation of AES // Cryptology and Network Security. 2006. P. 203-212. https://link.springer.com/chapter/10.1007/ 11935070_14.
Boss E., Grosso V., Tim Guneysu T., et al. Strong 8-bit sboxes with efficient masking in hardware // J. Cryptographic Engineering. 2017. No. 7(2). P. 149-165.
Kutzner S., Nguyen P. H., and Poschmann A. Enabling 3-share threshold implementations for all 4-bit s-boxes // LNCS. 2013. V.8565. P. 91-108.
Canteaut A., Duval S., and Leurent G. Construction of lightweight s-boxes using Feistel and MISTY structures (full version) // Cryptology ePrint Archive. 2015. No. 2015(711).
Lim C.H. CRYPTON: A New 128-bit Block Cipher - Specification and Analysis. http: //citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.5771. 1998.
Gerard B., Grosso V., Naya-Plasencia M., and Standaert F.-X. Block ciphers that are easier to mask: How far can we go? // LNCS. 2013. V. 8086. P. 383-399.
Matsui M. New block encryption algorithm MISTY // LNCS. 1997. V. 1267. P. 54-68.
Grosso V., Leurent G., Standaert F.-X., and Varici K. Ls-designs: Bitslice encryption for efficient masked software implementations // LNCS. 2014. V. 8540. P. 18-37.
Standaert F.-X., Piret G., Rouvroy G., et al. ICEBERG : An involutional cipher efficient for block encryption in reconfigurable hardware // LNCS. 2004. V.3017. P. 279-299.
Rijmen V. and Barreto P. The Khazad Legacy-Level Block Cipher. https://www. researchgate.net/publication/228924670_The_Khazad_legacy-level_block_cipher. 2018.
Lim C.-H. A revised version of Crypton - Crypton v1.0 // LNCS. 1999. V. 1636. P. 31-45.
Stallings W. The Whirlpool secure hash function // Cryptologia. 2006. No. 30(1). P. 55-67.
Perrin L., Udovenko A, and Biryukov A. Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem (full version) // Cryptology ePrint Archive. 2016. No. 2016(539).
De la Cruz Jimenez R. A. On some methods for constructing almost optimal s-boxes and their resilience against side-channel attacks // Cryptology ePrint Archive. 2018. No. 2018(618).
Fomin D. New classes of 8-bit permutations based on a butterfly structure // CTCrypt'18. 2018. https://ctcrypt.ru/files/files/2018/09_Fomin.pdf
Fomin D. On the way of constructing 2n-bit permutations from n-bit ones // CTCrypt'19. 2019 (в печати).
Фомин Д. Б. О подходах к построению низкоресурсных нелинейных преобразований // Обозрение прикладной и промышленной математики. 2018. Т. 25(4). С. 379-381.

Hardware implementation of one class of 8-bit permutations | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/39
Download full-text version
Counter downloads: 2701