On the decomposition of a vectorial boolean function into a composition of two functions
In the paper, we prove that if a vectorial Boolean function F in n variables, deg(F) = d > 2, is decomposable, then the function F' = A2 о F о A1, where A1, A2 are arbitrary affine (n, n)-permutations, is also decomposable; and if F(x) = G(H(x)), max{deg(F), deg(H)} = d' < d, function H is invertible and deg(H-1) ^ d', then the function F = F + A0 is decomposable for any affine function A0. The construction of a decomposable vectorial Boolean function of the third degree in an arbitrary number of variables is presented. A computational experiment showed that all vectorial Boolean functions of the third degree in three variables are decomposable.
Keywords
векторная булева функция, декомпозиция, пороговая реализация, vectorial Boolean function, decomposition, threshold implementationAuthors
| Name | Organization | |
| Pintus G. M. | Novosibirsk State University | g.pintus@g.nsu.ru |
References
On the decomposition of a vectorial boolean function into a composition of two functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/8