Lower bound for the number of bent functions at the minimum distance from Majorana - McFarland bent functions | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/6

Lower bound for the number of bent functions at the minimum distance from Majorana - McFarland bent functions

The construction of bent functions at a certain distance from a given bent function is investigated. The criterion that the function obtained from the bent function f by adding an indicator of an a ne subspace of dimension n is a bent function is proven, where f belongs to the Maiorana | McFarland classM2n. It is shown that the lower bound 22n+1

Download file
Counter downloads: 18

Keywords

bent functions, boolean functions, minimum distance, Maiorana, McFarland class, lower bounds

Authors

NameOrganizationE-mail
Bykov Denis A.Institute of Mathematics. S. L. Sobolev SB RAS; Novosibirsk State Universityden.bykov.2000i@gmail.com
Всего: 1

References

Rothaus O. On bent functions //J.Comb. Theory. Ser. A. 1976. V. 20. No. 3. P. 300-305.
Carlet С. Two new classes of bent functions // LNCS. 1993. V. 765. P. 77-101.
Zhang F., Cepak N., Pasalic E., and Wei Y. Further analysis of bent functions from C and D which are provably outside or inside M# // Discr. Appl. Math. 2020. V. 285. P. 458-472.
Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. № 4(6). С. 5-20.
Kolomeec N. The graph of minimal distances of bent functions and its properties // Des. Codes Cryptogr. 2017. V. 85. P. 395-410.
Логачев О. А., Сальников А. А., Ященко В. В. Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2004.
Canteaut A., Daum M., Dobbertin H., and LeanderG. Finding nonnormal bent functions // Discr. Appl. Math. 2006. V. 154. Iss. 2. P. 202-218.
Leander G. and McGuire G. Construction of bent functions from near-bent functions //j.Comb. Theory. Ser. A. 2009. V. 116. No. 4. P. 960-970.
Коломеец Н. А. Перечисление бент-функций на минимальном расстоянии от квадратичной бент-функции // Дискретн. анализ и исслед. опер. 2012. T. 19. Вып. 1. С. 41-58.
Коломеец Н. А. Верхняя оценка числа бент-функций на расстоянии 2k от произвольной бент-функции от 2k переменных // Прикладная дискретная математика. 2014. № 3(25). С. 28-39.
 Lower bound for the number of bent functions at the minimum distance from Majorana - McFarland bent functions | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/6

Lower bound for the number of bent functions at the minimum distance from Majorana - McFarland bent functions | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/6

Download full-text version
Counter downloads: 783