The second coordinate sequence of a linear recurrence of maximum period over ring Z 8 | Applied Discrete Mathematics. Supplement. 2013. № 6.

The second coordinate sequence of a linear recurrence of maximum period over ring Z 8

The analytical structure of the second coordinate in a linear recurrence sequence over ring Z 8 is described. The lower bound of its rank (linear complexity) is specified. The class of polynomials and recurrences of the maximum period with the highest possible rank is found.

Download file
Counter downloads: 254

Keywords

линейная рекуррентная последовательность над кольцом, координатная последовательность, ранг, аналитическое строение, линейная рекуррентная последовательность над кольцом, координатная последовательность, ранг, аналитическое строение, linear recurring sequence, coordinate sequence, rank, analytical structure

Authors

NameOrganizationE-mail
Bylkov D. N.Limited Liability Company "Center of the certification of studies" (Moscow)bilkov@gmail.com
Всего: 1

References

Kurakin V.L., KuzminA.S., Mikhalev A. V., and Nechaev A. A. Linear Recurring Sequences over Rings and Modules // J. Math. Sci. (New York). 1995. V. 76. No. 6. P. 2793-2915.
Helleseth T. and Martinsen H. M. Binary sequences of period 2m — 1 with large linear complexity // Information and Computation. 1999. V. 151. P. 73-91.
Куракин В. Л. Первая координатная последовательность линейной рекурренты максимального периода над кольцом Галуа // Дискретная математика. 1994. Т. 6. № 2. С. 88-100.
 The second coordinate sequence of a linear recurrence of maximum period over ring Z
                  <sub>8</sub> | Applied Discrete Mathematics. Supplement. 2013. № 6.

The second coordinate sequence of a linear recurrence of maximum period over ring Z 8 | Applied Discrete Mathematics. Supplement. 2013. № 6.