An affine property of boolean functions on subspaces and their shifts | Applied Discrete Mathematics. Supplement. 2013. № 6.

An affine property of boolean functions on subspaces and their shifts

Let a Boolean function in n variables be affine on an affine subspace of dimension |~n/2] if and only if f is affine on any its shift. It is proved that algebraic degree of f can be more than 2 only if there is no affine subspace of dimension [n/2] that f is affine on it.

Download file
Counter downloads: 317

Keywords

булевы функции, бент-функции, квадратичные функции, Boolean functions, bent functions, quadratic functions

Authors

NameOrganizationE-mail
Kolomeec N. A.Institute of Mathematics. Siberian Branch of the Russian Academy of Sciences (Novosibirsk)nkolomeec@gmail.com
Всего: 1

References

Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
Токарева Н. Н. Нелинейные булевы функции: бент-функции и их обобщения. Saarbrucken: LAP LAMBERT Academic Publishing, 2011.
Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. №4. С. 5-20.
 An affine property of boolean functions on subspaces and their shifts | Applied Discrete Mathematics. Supplement. 2013. № 6.

An affine property of boolean functions on subspaces and their shifts | Applied Discrete Mathematics. Supplement. 2013. № 6.