An iterative construction of almost perfect nonlinear functions | Applied Discrete Mathematics. Supplement. 2013. № 6.

An iterative construction of almost perfect nonlinear functions

Vectorial Boolean functions F and G are equivalent if Va = 0 Vb [3x(F(x) 0 F(x 0 a) = b) ^ 3x(G(x) 0 G(x 0 a) = b)]. It is proved that every class of equivalent almost perfect nonlinear (APN) functions in n variables contains 2 different functions. An iterative procedure is proposed for constructing APN functions in n + 1 variables from two APN and two Boolean functions in n variables satisfying some conditions. Computer experiment show that among functions in small variables there are many functions satisfying these conditions.

Download file
Counter downloads: 396

Keywords

векторная булева функция, APN-функция, 7-эквивалентность, итеративная конструкция, vectorial Boolean function, APN function, y-equivalence, iterative construction

Authors

NameOrganizationE-mail
Frolova A. A.Novosibirsk State Universityfrolova.anast@gmail.com
Всего: 1

References

Nyberg K. Differentially uniform mappings for cryptography // Eurocrypt 1993. LNCS. 1994. V. 765. P. 55-64.
Тужилин М. Э. Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. №3. С. 14-20.
 An iterative construction of almost perfect nonlinear functions | Applied Discrete Mathematics. Supplement. 2013. № 6.

An iterative construction of almost perfect nonlinear functions | Applied Discrete Mathematics. Supplement. 2013. № 6.