The recognition of recurrent sequences generated by conservative functions | Applied Discrete Mathematics. Supplement. 2014. № 7.

The recognition of recurrent sequences generated by conservative functions

Let K be a class of functions f : R ^ R, where n = 1, 2,... Suppose that S (K, N) is the set of all N-prefixes of recurrent sequences generated by functions from K. The recognition problem for the property "x G S(K, N)", where x G R and K is the class of conservative functions over the ring R = Z pm , is considered. For solving this problem, an algorithm of complexity O(N log N) is offered.

Download file
Counter downloads: 299

Keywords

схема, функциональные элементы, рекуррентные последовательности, консервативные функции, conservative function, recurrent sequences, circuit of functional elements

Authors

NameOrganizationE-mail
Sergeeva O. E.SergeevaOE@gmail.com
Всего: 1

References

Berlekamp E. R. Algebraic Coding Theory. New York: Mc Craw-Hill, 1968. (Пер.: Берле-кэмп Э. Алгебраическая теория кодирования. М.: Мир, 1971.)
Massey J. L. Shift-register synthesis and BCH decoding // IEEE Trans. Inform. Theory. 1969. V. 15. No 1. Part 1. P. 122-127.
Куракин В. Л. Алгоритм Берлекэмпа - Мэсси над конечными коммутативными кольцами // Проблемы передачи информ. 1999. №35. C. 38-50.
Анашин В. С. Равномерно распределенные последовательности целых p-адических чисел // Математические заметки. 1994. Т. 55. №2. C.3-46.
Wegener I. The Complexity of Boolean Functions. John Wiley & Sons Ltd, 1987.
 The recognition of recurrent sequences generated by conservative functions | Applied Discrete Mathematics. Supplement. 2014. № 7.

The recognition of recurrent sequences generated by conservative functions | Applied Discrete Mathematics. Supplement. 2014. № 7.