On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms | Applied Discrete Mathematics. Supplement. 2015. № 8.

On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms

It is shown that the mixing graphs for the functions realized by A5/1 type algorithms based on linear feedback shift registers of lengths n, m, p with characteristic polynomials of weights v, n are primitive. The following lower and upper bounds for the mixing graph exponent and local exponent depending on these parameters take place: 1 + max{\n/v], \m/^\, \p/n]} ^ exp Г ^ max{n, m,p}. It is obtained that, for A5/1 algorithm, exponent exp Г and local exponent *J-expT, J = {1, 20, 42}, are equal to 21. This matches the idle running length of A5/1 generator.

Download file
Counter downloads: 255

Keywords

local exponent, exponent, primitive graph, A5/1 generator, локальный экспонент, экспонент, примитивный граф, генератор A5/1

Authors

NameOrganizationE-mail
Kyazhin S.N.National Research Nuclear University "Moscow Engineering Physics Institute"; Center for development of special MO RF (Moscow)s.kyazhin@kaf42.ru
Fomichev V. M.Financial University under the Government of the Russian Federation; LLC "Security Code" (Moscow)fomichev@nm.ru
Всего: 2

References

Фомичев В. М. Свойства путей в графах и мультиграфах // Прикладная дискретная математика. 2010. №1(7). С. 118-124.
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010.
Кяжин С. Н., Фомичев В. М. Локальная примитивность графов и неотрицательных матриц // Прикладная дискретная математика. 2014. №3(25). С. 68-80.
 On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms | Applied Discrete Mathematics. Supplement. 2015. № 8.

On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755