⊗W, ch-markovian transformations | Applied Discrete Mathematics. Supplement. 2015. № 8.

⊗W, ch-markovian transformations

Let X be an alphabet of plaintexts (ciphertexts) of iterated block ciphers and (X, ®) be a regular abelian group. The group operation ® defines the difference of a text pair. ®-Markov ciphers are defined as iterated ciphers of which round functions satisfy the condition that the differential probability is independent of the choice of plaintexts from X. For ®-Markov ciphers with independent round keys, the sequence of round differences forms a Markov chain. In this paper, we consider ®-Markov ciphers and a partition W = {W 0,..., W r-1} with blocks being lumped states of the Markov chain. An /-round ®-Markov cipher is called ® W;ch-markovian if the cipher and W satisfy the following condition: the block numbers sequence j 0,..., j such that, for all i е {0,...,/}, the i -round difference belongs to is a Markov chain. This definition can be also extended for permutations on X. For a partition W and differential probabilities of a round function of an /-round ®-Markov cipher, we get conditions that the cipher is ® W;ch-markovian. We describe ® W;ch-markovian permutations on Z n based on an exponential operation and a logarithmic operation, which are defined on Z n and GF(n +1).

Download file
Counter downloads: 229

Keywords

exponential transformation, truncated differential technique, Markov chain, Markov block cipher, экспоненциальные преобразования, метод усечённых разностей, цепи Маркова, марковский алгоритм блочного шифрования

Authors

NameOrganizationE-mail
Pogorelov B.A.Academy of Cryptography of the Russian Federation (Moscow)
Pudovkma M. A.National Research Nuclear University "Moscow Engineering Physics Institute" (Moscow)maricap@rambler.ru
Всего: 2

References

Massey J. L. SAFER K-64: One year later // FSE'1994. LNCS. 1995. V. 1008. P. 212-232.
Агиевич С. В., Афоненко А. А. Экспоненциальные s-блоки // Материалы конф. МаБит. М.: МЦНМО, 2003. С. 127-130.
Шемякина О. В. Об оценке характеристик разбиений различных алгебраических структур // C6. трудов конф. ИБРР-2011. СПб.: СПОИСУ, 2011. С. 137.
Reichardt B. and Wagner D. Markov truncated differential cryptanalysis of Skipjack // SAC'2002. LNCS. 2003. V.2595. P. 110-128.
Blondeau C. Improbable differential from impossible differential: on the validity of the model // IND0CRYPT'2013. LNCS. 2013. V.8250. P. 149-160.
Moriai S., Sugita M., Aoki K., and Kanda M. Security of E2 against truncated differential cryptanalysis // SAC'1999. LNCS. 2000. V. 1758. P. 106-117.
Matsui M. and Tokita T. Cryptanalysis of a reduced version of the block cipher E2 // FSE'1999. LNCS. 1999. V. 1636. P. 71-80.
Knudsen L. R. Truncated and higher order differentials // FSE'1995. LNCS. 1995. V. 1008. P. 196-211.
Lai X., Massey J. L., and Murphy S. Markov ciphers and differential cryptanalysis // EUROCRYPT'1991. LNCS. 1991. V. 547. P. 17-38.
 ⊗W,                  <sub>ch</sub>-markovian transformations | Applied Discrete Mathematics. Supplement. 2015. № 8.

⊗W, ch-markovian transformations | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755