The inverse of differentiable permutations over groups | Applied Discrete Mathematics. Supplement. 2015. № 8.

The inverse of differentiable permutations over groups

The concept of a differentiable function over a group with a normal series generalizing the concept of a polynomial function is introduced. In the case of abelian, nilpotent and solvable groups, a recurrent formula for constructing the inverse of differentiable permutation with respect to composition is proved.

Download file
Counter downloads: 258

Keywords

differentiable function, polynomial over group, permutation, дифференцируемая функция, полином над группой, перестановка

Authors

NameOrganizationE-mail
Karpov A. V.Tomsk State Universitykarpov@isc.tsu.ru
Всего: 1

References

Anashin V. S. Noncommutative algebraic dynamics: ergodic theory for profinite groups // Proc. Steklov Institute of Math. 2009. V.265. P. 30-58.
Карпов А. В. Перестановочные многочлены над примарными кольцами // Прикладная дискретная математика. 2013. №4(22). C. 16-21.
 The inverse of differentiable permutations over groups | Applied Discrete Mathematics. Supplement. 2015. № 8.

The inverse of differentiable permutations over groups | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755