On self dual bent functions | Applied Discrete Mathematics. Supplement. 2015. № 8.

On self dual bent functions

Here, it is proved that a Boolean function f in n variables is self-dual bent if and only if the Hamming weight of the function F y(x) = f (x) ф f (y) ф x · y is equal to 2 - 2 for any y e Fn.

Download file
Counter downloads: 250

Keywords

self-dual bent, bent function, Boolean function, самодуальная бент-функция, бент-функция, булева функция

Authors

NameOrganizationE-mail
Kutsenko A. V.Novosibirsk State UniversityAlexandrKutsenko@bk.ru
Всего: 1

References

Hou X. Classification of self dual quadratic bent functions // Des. Codes Cryptogr. 2012. V. 63. Iss.2. P. 183-198.
Carlet C., Danielson L. E., Parker M. G., Sole P. Self dual bent functions // Int. J. Inform. Coding Theory. 2010. No. 1. P. 384-399.
 On self dual bent functions | Applied Discrete Mathematics. Supplement. 2015. № 8.

On self dual bent functions | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755