On generic complexity of the quadratic resi-duosity problem | Applied Discrete Mathematics. Supplement. 2015. № 8.

On generic complexity of the quadratic resi-duosity problem

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. For example, this is the classical discrete logarithm problem. In this talk, we consider generic complexity of the quadratic residuosity problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the quadratic residuosity problem is hard in the worst case.

Download file
Counter downloads: 243

Keywords

probabilistic algorithm, quadratic residue, generic complexity, вероятностный алгоритм, квадратичный вычет, венерическая сложность

Authors

NameOrganizationE-mail
Rybalov A.N.Institute of Mathematics. Sobolev SB RAS (Novosibirsk)alexander.rybalov@gmail.com
Всего: 1

References

Мао В. Современная криптография: теория и практика. М.: Вильямс, 2005. 768 с.
Рыбалов А. Н. О генерической сложности проблемы распознавания квадратичных вычетов // Прикладная дискретная математика. 2015. №2. С. 54-58.
Blum M. and Micali S. How to generate cryptographically strong sequences of pseudorandom bits // SIAM J. Computing. 1984. V. 13. No. 4. P. 850-864.
Kapovichl., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
 On generic complexity of the quadratic resi-duosity problem | Applied Discrete Mathematics. Supplement. 2015. № 8.

On generic complexity of the quadratic resi-duosity problem | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755