Perfect binary codes of infinite length
A subset C of the infinite-dimensional Boolean cube {0,1} is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centres in C are pairwise disjoint and their union covers the cube {0,1} . A perfect binary code in the zero layer {0,1}^, consisting of all vectors of the cube {0,1} having finite supports, is defined similarly. It is proved that the cardinality of the set of all equivalence classes of perfect binary codes in the zero layer {0,1}^ is continuum. At the same time, the cardinality of the set of all equivalence classes of perfect binary codes in the whole cube {0,1} is hypercontinuum.
Keywords
совершенные двоичные коды, код Хемминга, расстояние Хем-минга, коды Васильева, классы эквивалентности, континуум, гиперконтинуум, perfect binary codes, Hamming code, Hamming distance, Vasil'ev codes, equivalence classes, continuum, hypercontinuumAuthors
Name | Organization | |
Malyugin S. A. | Institute of Mathematics. Sobolev SB RAS (Novosibirsk) | mal@math.nsc.ru |
References

Perfect binary codes of infinite length | Applied Discrete Mathematics. Supplement. 2015. № 8.