Application of algorithms solving sat problem to cryptanalysis of hash functions of MD family | Applied Discrete Mathematics. Supplement. 2015. № 8.

Application of algorithms solving sat problem to cryptanalysis of hash functions of MD family

In this research, we consider the problems of searching for collisions in cryptographic hash functions from the MD family as variants of the Boolean Satisfiability problem (SAT). To construct the SAT encodings for MD4 and MD5 algorithms, we employ the Transalg system designed to automatically transform algorithmic descriptions of discrete functions to Boolean equations. For hash functions under consideration, the SAT encodings are much more compact than known analogues, because the several additional constraints based on the known differential attacks on these functions are used in these encodings. The solving time for the SAT instances, encoding the search for single block collisions for MD4, is on average less than 1 sec on an usual PC. To solve the SAT instances, encoding the search for two-block collisions for MD5, we employed parallel SAT solvers working on the computing cluster. As a result, we found a class of two-block collisions for MD5 with the first 10 zero bytes. We constructed several dozens of collisions of the proposed kind. Also, we considered the inversion problem for the MD4 hash function (the search for the preimage for a given hash value). To solve this problem, we developed a technique relying on the so called "switch variables". Each switch variable is responsible for an additional constraint on several Boolean variables included in the SAT encoding. If a switch variable takes the value of Truth then the corresponding constraint becomes enabled and should be taken into account by the SAT solving algorithm. Otherwise this constraint remains inactive. The use of switch variables made it possible to find new additional constraints (similar to "Dobbertin's constraints") and to improve the effectiveness of solving the inversion problem for 39-step MD4 by a hundredfold.

Download file
Counter downloads: 251

Keywords

криптографические хэш-функции, коллизии для хэш-функций, алгоритмы MD4, MD5, задача о булевой выполнимости, SAT, cryptographic hash functions, collisions of hash functions, MD4, MD5, Boolean satisfiability problem, SAT

Authors

NameOrganizationE-mail
Bogachkova I. A.Institute of Mathematics, Economics and Informatics (Irkutsk)
Zaikin O.S.Institute of System Dynamics and Control Theory of themzaikin.icc@gmail.com
Kochemazov S.E.Institute of System Dynamics and Control Theory of them
Otpuschennikov I. V.Institute of System Dynamics and Control Theory of themotilya@yandex.ru
Semenov A. A.Institute of System Dynamics and Control Theory of thembiclop.rambler@yandex.ru
Всего: 5

References

Biham E. and Shamir A. Differential cryptanalysis of DES-like cryptosystems // J. Cryptology. 1991. V.4. No. 1. P. 3-72.
Mironov I. and Zhang L. Applications of SAT solvers to cryptanalysis of hash functions // LNCS. 2006. V. 4121. P. 102-115.
Wang X. and Yu H. How to break MD5 and other hash functions // LNCS. 2005. V.3494. P. 19-35.
Wang X., LaiX., Feng D., et.al. Cryptanalysis of the hash functions MD4 and RIPEMD // LNCS. 2005. V. 3494. P. 1-18.
Merkle R. A. Certified digital signature // LNCS. 1990. V.435. P. 218-238.
Damgard I. A. A design principle for hash functions // LNCS. 1990. V. 435. P. 416-427.
Rivest R. L. The MD4 Message Digest Algorithm // LNCS. 1991. V. 537. P. 303-311.
Biere A., Heule V., van Maaren H, and Walsh T. Handbook of Satisfiability. Amsterdam: IOS Press, 2009.
Богачкова И. А., Заикин О. С., Кочемазов С. Е., Отпущенников И. В., Семёнов А. А. Задачи поиска коллизий для криптографических хеш-функций семейства MD как варианты задачи о булевой выполнимости // Вычислительные методы и программирование. 2015. T. 16. С. 61-77.
Отпущенников И. В., Семёнов А. А. Технология трансляции комбинаторных проблем в булевы уравнения // Прикладная дискретная математика. 2011. №1. С. 96-115.
De D., Kumarasubramanian A, and Venkatesan R. Inversion attacks on secure hash functions using SAT solvers // LNCS. 2007. V.4501. P. 377-382.
Dobbertin H. The first two rounds of MD4 are not One-Way // Proc. 5th Intern. Workshop Fast Software Encryption. London, UK: Springer Verlag, 1998. P. 284-292.
Nadel A. and Ryvchin V. Efficient SAT solving under assumptions // LNCS. 2012. V. 7317. P. 242-255.
 Application of algorithms solving sat problem to cryptanalysis of hash functions of MD family | Applied Discrete Mathematics. Supplement. 2015. № 8.

Application of algorithms solving sat problem to cryptanalysis of hash functions of MD family | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755