On the complexity of discrete logarithm problem in a finite cyclic group with the efficient inversion | Applied Discrete Mathematics. Supplement. 2015. № 8.

On the complexity of discrete logarithm problem in a finite cyclic group with the efficient inversion

Discrete logarithm problem in a finite group G with the efficient inversion consists in solving the equation Q = nP with respect to n in the interval (-N/2, N/2) for the specified P, Q е G,0

Download file
Counter downloads: 251

Keywords

задача дискретного логарифмирования в интервале, алгоритм Годри , Шоста, discrete logarithm problem in interval, Gaudry , Schost algorithm

Authors

NameOrganizationE-mail
Nikolaev M. V.Moscow State Universitymax.abstract@gmail.com
Всего: 1

References

Gaudry P. and Schost E. A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm // LNCS. 2004. V.3076. P. 208-222.
Galbraith S. D. and Holmes M. A non-uniform birthday problem with applications to discrete logarithms // Discr. Appl. Math. 2012. V. 160. No. 10-11. P. 1547-1560. eprint.iacr.org/ 2010/616.
Wiener M. J. and Zuccherato R. J. Faster attacks on elliptic curve cryptosystems // LNCS. 1999. V. 1556. P. 190-200.
Galbraith S. D. and Ruprai R. S. Using equivalence classes to accelerate solving the Discrete Logarithm Problem in a short interval // LNCS. 2010. V. 6056. P. 368-383. eprint.iacr.org/ 2010/615.
Николаев М. Н. О сложности задачи дискретного логарифмирования в интервале в группе с эффективным инвертированием // Прикладная дискретная математика. 2015. № 2(28). С.97-102.
 On the complexity of discrete logarithm problem in a finite cyclic group with the efficient inversion | Applied Discrete Mathematics. Supplement. 2015. № 8.

On the complexity of discrete logarithm problem in a finite cyclic group with the efficient inversion | Applied Discrete Mathematics. Supplement. 2015. № 8.

Download full-text version
Counter downloads: 1755