Generalized narayana polynomials and their q-analogues | Applied Discrete Mathematics. Supplement. 2016. № 9.

Generalized narayana polynomials and their q-analogues

Generating polynomials of the statistics rise, des and inv are considered on the entered 312-avoiding GS-permutations of an order r ^ 1. It is shown that the polynomials of the statistics rise and des are some generalizations of the known Narayana polynomials. For the generalized Narayana polynomials, the inverse generating function, an algebraic equation for the generating function and a recursion relation with multiple convolutions are obtained. For the generating polynomials of pair (des, inv), an analogue of the obtained recursion relation and an equation for the generating function of these polynomials are found. Their particular case leads to the corresponding q-analogues of generalized Narayana polynomials.

Download file
Counter downloads: 210

Keywords

312-избегающие ГС-перестановки, обобщённые многочлены Нараяны, производящая функция, обратная функция, свёртка, q-аналоги, 312-avoiding GS-permutations, generalized Narayana polynomials, generating function, inverse function, convolution, q-analogues

Authors

NameOrganizationE-mail
Bondarenko L. N.Penza State Universityleobond5@mail.ru
Sharapova M. L.Moscow State Universitymsharapova@list.ru
Всего: 2

References

Gessel I. and Stanley R. P. Stirling polynomials //J. Comb. Theory. Ser. A. 1978. V. 24. P. 24-33.
Грэхем Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики. М.: Мир, 1998. 703 с.
Бондаренко Л. Н., Шарапова М. Л. Параметрические комбинаторные задачи и методы их исследования // Известия вузов. Поволжский регион. Физ.-мат. науки. 2010. №4 (16). С.50-63.
Стенли Р. Перечислительная комбинаторика. Т. 2. М.: Мир, 2009. 768 с.
Кнут Д. Искусство программирования для ЭВМ. Т. 1. М.: Мир, 1976. 720 с.
Furlinger J. and Hofbauer J. q-Catalan numbers //J. Comb. Theory. Ser. A. 1985. V. 40. P. 248-264.
 Generalized narayana polynomials and their q-analogues | Applied Discrete Mathematics. Supplement. 2016. № 9.

Generalized narayana polynomials and their q-analogues | Applied Discrete Mathematics. Supplement. 2016. № 9.

Download full-text version
Counter downloads: 1385