On the classification of distance-transitive orbital graphs of overgroups of the jevons group | Applied Discrete Mathematics. Supplement. 2016. № 9.

On the classification of distance-transitive orbital graphs of overgroups of the jevons group

The Jevons group is the exponential group S2 t Sn. It is generated by the group of all permutation (n x n)-matrices over GF(2) and the translation group on the n-dimensional vector space Vn over GF(2). For a permutation group G on Vn being an overgraph of S2 t Sn, an orbital of G is an orbit of G in its natural action on Vn x Vn. The orbital graph associated with an orbital Г is the graph with the vertex set Vn and the edge set Г. In this paper, we classify distance-transitive orbital graphs of overgroups of the Jevons group S2 t Sn and show that some of them are isomorphic to the following graphs: the complete graph K2n, the complete bipartite graph K2n-i,2n-i, the halved (n + 1)-cube, the folded (n + 1)-cube, alternating forms graphs, the Taylor graph, the Hadamard graph.

Download file
Counter downloads: 221

Keywords

граф орбитала, группа Джевонса, дистанционно-транзитивный граф, граф Хемминга, orbital graph, Jevons group, distance-transitive graph, Hamming graph

Authors

NameOrganizationE-mail
Pogorelov B.A.Russian Academy of Cryptography
Pudovkina M. A.National Research Nuclear University (MEPI)maricap@rambler.ru
Всего: 2

References

Баннаи Э., Ито Т. Алгебраическая комбинаторика. М.: Мир, 1987.
Погорелов Б. А. Подметрики метрики Хемминга и теорема А.А. Маркова // Труды по дискретной математике. 2006. №9. С. 190-219.
Погорелов Б. А., Пудовкина М. А. Подметрики метрики Хемминга и преобразования, распространяющие искажения в заданное число раз // Труды по дискретной математике. 2007. №10. С. 202-238.
Погорелов Б. А., Пудовкина М. А. Подметрики Хемминга и их группы изометрий // Труды по дискретной математике. 2008. Т.11. №2. С. 32-68.
Погорелов Б. А., Пудовкина М. А. Свойства графов орбиталов надгрупп группы Джевонса // Математические вопросы криптографии. 2010. Т.1. №1. С. 55-84.
Brouwer A. E., Cohen A. M. , and Neumaier A. Distance-Regular Graphs. Springer Verlag, 1989.
Praeger C. E., Saxl J., and Yokoyama K. Distance transitive graphs and finite simple groups // Proc. London Math. Soc. 1987. V. 55. P. 1-21.
Ivanov A. A. Distance-transitive graphs and their classification // Investigations in Algebraic Theory of Combinatorial Objects / eds. I. A. Faradzev et al. Dordrecht: Springer Science + Business Media, 1994. P. 283-378.
Cohen A. M. Distance-transitive graphs // Encycloped. Math. Applicat. 2004. V. 102. P. 222-249.
Van Bon J. Finite primitive distance-transitive graphs // European J. Combinatorics. 2007. V.28. P. 517-532.
Liebeck M. W. and Saxl J. The finite primitive permutation groups of rank three // Bull. London Math. Soc. 1986. V. 18. P. 165-172.
 On the classification of distance-transitive orbital graphs of overgroups of the jevons group | Applied Discrete Mathematics. Supplement. 2016. № 9.

On the classification of distance-transitive orbital graphs of overgroups of the jevons group | Applied Discrete Mathematics. Supplement. 2016. № 9.

Download full-text version
Counter downloads: 1385