On differential equivalence of quadratic apn functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

On differential equivalence of quadratic apn functions

A vectorial Boolean function F : Fn ^ Fn is called almost perfect nonlinear (APN) if the equation F(x) + F(x + a) = b has at most 2 solutions for all vectors a,b Е Fn, where a is nonzero. For a given F, an associated Boolean function yf(a,b) in 2n variables is defined so that it takes value 1 iff a is nonzero and the equation F(x) + +F(x+a) = b has solutions. We introduce the notion of differentially equivalent functions as vectorial functions that have equal associated Boolean functions. The problem to describe the differential equivalence class of a given APN function is very interesting since the answer can potentially lead to some new constructions of APN functions. We start analyzing this problem with the consideration of affine functions A such that a quadratic APN function F and F + A are differentially equivalent functions. We completely describe these affine functions A for an arbitrary APN Gold function F. Computational results for known quadratic APN functions in small number of variables (2, ..., 8) are presented.

Download file
Counter downloads: 207

Keywords

векторная булева функция, почти совершенно нелинейная функция, дифференциальная эквивалентность, vectorial Boolean functions, almost perfect nonlinear functions, differential equivalence

Authors

NameOrganizationE-mail
Gorodilova A. A.Institute of Mathematicsgorodilova@math.nsc.ru
Всего: 1

References

Тужилин М. Э. Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. №3. С. 14-20.
Pott A. Almost perfect and planar functions // Des. Codes Cryptogr. 2016. V. 78. P. 141-195.
Carlet C. Open questions on nonlinearity and on APN functions // Arithmetic of Finite Fields. LNCS. 2015. V. 9061. P. 83-107.
Глухое М. М. О матрицах переходов разностей при использовании некоторых модулярных групп // Матем. вопр. криптограф. 2013. Т. 4. №4. С. 27-47.
Сачков В. Н. Комбинаторные свойства дифференциально 2-равномерных подстановок // Матем. вопр. криптограф. 2015. Т. 6. №1. С. 159-179.
Городилова А. А. О пересечении множеств значений производных APN-функций // Прикладная дискретная математика. Приложение. 2015. №8. С. 25-27.
 On differential equivalence of quadratic apn functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

On differential equivalence of quadratic apn functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

Download full-text version
Counter downloads: 1385