On the hamming distance between two bent functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

On the hamming distance between two bent functions

This work is devoted to the Hamming distance between two bent functions. Using the construction of bent functions at the minimal distance, some possible values of the distance are obtained. All possible distances between two Maiorana - Mc-Farland bent functions are described.

Download file
Counter downloads: 220

Keywords

булевы функции, бент-функции, расстояние Хэмминга, Boolean functions, bent functions, Hamming distance

Authors

NameOrganizationE-mail
Kolomeec N. A.Institute of Mathematics SB RAS
Всего: 1

References

Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V.20. No.3. P. 300-305.
Tokareva N. N. Bent Functions, Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
Tokareva N. N. On the number of bent functions from iterative constructions: lower bounds and hypothesis // Adv. Math. Commun. 2011. V. 5. No. 4. P. 609-621.
McFarland R. L. A family of difference sets in non-cyclic groups //J. Combin. Theory. Ser. A. 1973. V. 15. P. 1-10.
Kasami T. and Tokura N. On the weight structure of Reed - Muller codes // IEEE Trans. Inform. Theory. 1970. V. 16. No 6. P. 752-759.
Потапов В. Н. Спектр мощностей компонент корреляционно-иммунных функций, бент-функций, совершенных раскрасок и кодов // Проблемы передачи информации. 2012. Т. 48. №1. С. 54-63.
КоломеецН.А. Верхняя оценка числа бент-функций на расстоянии 2k от произвольной бент-функции от 2k переменных // Прикладная дискретная математика. 2014. №3. С.28-39.
 On the hamming distance between two bent functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

On the hamming distance between two bent functions | Applied Discrete Mathematics. Supplement. 2016. № 9.

Download full-text version
Counter downloads: 1385