On the set of values for hamming distance between self-dual bent functions
It is shown that the Hamming distance between self-dual Maiorana - McFarland bent functions of the form (x,n(y)) Ф h(y), where п e GL(n/2, Z2), belongs to the set {2, 2 (1 ± 1/2) , 2 (1 ± 1/2),..., 2 (1 ± 1/2) , 2}.
Download file
Counter downloads: 180
Keywords
булева функция, преобразование Уолша-Адамара, МакФарланда, Boolean function, Walsh Hadamard transform, McFarland bent function, бент-функция, самодуальная бент-функция, конструкция Мэйорана , bent function, self-dual bent, MaioranaAuthors
Name | Organization | |
Kutsenko A. V. | Novosibirsk State University | AlexandrKutsenko@bk.ru |
References
Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
McFarland R. L. A family of difference sets in non-cyclic groups //J. Combin. Theory. Ser. A. 1973. V. 15. No. 1. P. 1-10.
Carlet C., Danielson L. E., Parker M. G., and Sole P. Self dual bent functions // Int. J. Inform. Coding Theory. 2010. No. 1. P. 384-399.
Hou X. Classification of self dual quadratic bent functions // Des. Codes Cryptogr. 2012. V. 63. P. 183-198.
Feulner T., SokL., Sole P., and Wassermann A. Towards the classification of self-dual bent functions in eight variables // Des. Codes Cryptogr. 2013. V. 68. P. 395-406.

On the set of values for hamming distance between self-dual bent functions | Applied Discrete Mathematics. Supplement. 2016. № 9.
Download full-text version
Counter downloads: 1385