On the set of derivatives of a boolean bent function
Is it true that any balanced Boolean function in n variables of degree less than n/2 is a derivative of a bent function in n variables? We study this question in the case when n is small.
Download file
Counter downloads: 221
Keywords
bent functions, derivative, affine classification, бент-функции, производная, аффинная классификацияAuthors
Name | Organization | |
Tokareva N.N. | Institute of Mathematics SB RAS | tokareva@math.nsc.ru |
References
Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press. Elsevier,

On the set of derivatives of a boolean bent function | Applied Discrete Mathematics. Supplement. 2016. № 9.
Download full-text version
Counter downloads: 1385