On quadratic form rank distribution and asymptotic bounds of affinity level | Applied Discrete Mathematics. Supplement. 2016. № 9.

On quadratic form rank distribution and asymptotic bounds of affinity level

An affinity level la(f) of a Boolean function f is defined as minimal number of variable fixations, that produce an affine function. A general affinity level La(f) of Boolean function f is defined as minimal number of fixations of variable linear combination values, that produce an affine function. The general affinity level of quadratic form equals r iff the rank of quadratic form equals 2r. The paper contains some asymptotic properties of the rank of quadratic forms. As a corollary some asymptotic bounds of the general affinity level of quadratic forms are formulated. Let 0 ^ c ^ 1. If n = 2k + e, 0 ^ e ^ 1, then for almost all quadratic forms of n variables, as n ^ го.

Download file
Counter downloads: 197

Keywords

Boolean functions, affinity level, quadratic form, двоичные функции, квадратичные формы, уровень аффинности

Authors

NameOrganizationE-mail
Cheremushkin A. V.The Academy of Cryptography of the Russian Federation; Federal State Unitary Enterprise "Research Institute" Quantum "avc238@mail.ru
Всего: 1

References

Dixon L. E. Linear Groups with an Expositions to the Galois Field Theory. Leipzig: Publ. by B.G. Teubner, 1901.
Дьедонне Ж. Геометрия классических групп. M.: Мир, 1974.
Мак-Вильямс Ф. Дж., СлоэнН.Дж.А. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
Рязанов Б. В., Чечета С. И. О приближении булевой функции множеством случайных квадратичных форм // Дискретная математика. 1995. Т. 7. Вып.3. С. 129-145.
Буряков М. Л. Асимптотические оценки уровня аффинности для почти всех булевых функций // Дискретная математика. 2008. Т. 20. Вып.3. С. 73-79.
 On quadratic form rank distribution and asymptotic bounds of affinity level | Applied Discrete Mathematics. Supplement. 2016. № 9.

On quadratic form rank distribution and asymptotic bounds of affinity level | Applied Discrete Mathematics. Supplement. 2016. № 9.

Download full-text version
Counter downloads: 1385