Characterization of linear transformations defined by finite field hadamard matrices and circulant matrices | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/2

Characterization of linear transformations defined by finite field hadamard matrices and circulant matrices

We consider general and cryptographic properties of cir-culant matrices and Finite Field Hadamard Matrices. We describe invariant subspaces of linear transformations defined by Finite Field Hadamard Matrices and construct a class of invariant subspaces for circulant matrices.

Download file
Counter downloads: 162

Keywords

инвариантные подпространства, матрицы Адамара над конечным полем, циркулянтные матрицы, invariant subspaces, Finite Field Hadamard Matrices, circulant matrices

Authors

NameOrganizationE-mail
Volgin A. V.Moscow State Institute of Radio Engineering, Electronics and Automationartem.volgin@bk.ru
Kryuchkov G.V.Laboratorykryuchkov-g@yandex.ru
Всего: 2

References

Barreto P. S. L. M. and Rijmen V. The KHAZAD Legacy-Level Block Cipher. Submission to the NESSIE Project. 2000. https://www.researchgate.net/publication/228924670_The_ Khazad_legacy-level_block_cipher
Biryukov A. Analysis of involutional ciphers: Khazad and Anubis // Intern. Workshop Fast Software Encryption. Berlin, Heidelberg: Springer, 2003. P. 45-53.
Daemon J. and Rijmen V. The Rijndael block cipher: AES proposal // First AES Candidate Conf. (AES1). Ventura, California, August 20-22, 1998. P.343-348.
Barreto P. S. L. M. and Rijmen V. The Whirlpool hashing function // First open NESSIE Workshop, Leuven, Belgium. 2000. V. 13. P. 14.
Погорелов Б. А., Пудовкина М. А. Комбинаторная характеризация XL-слоев // Математические вопросы криптографии. 2013. T.4. №.3. C. 99-129.
Burov D. A. and Pogorelov B. A. An attack on 6 rounds of Khazad // Математические вопросы криптографии. 2016. T. 7. №2. C. 35-46.
Leander G. et al. A cryptanalysis of PRINTcipher: the invariant subspace attack // Ann. Cryptology Conf. Berlin, Heidelberg: Springer, 2011. P. 206-221.
Gupta K. C. and Ray I. G. On constructions of involutory MDS matrices // Intern. Conf. Cryptology in Africa. Berlin, Heidelberg: Springer, 2013. P. 43-60.
Sakall M. T., Akleylek S., Aslan B., et al. On the construction of 20 х 20 and 24 х 24 binary matrices with good implementation properties for lightweight block ciphers and hash functions // Mathematical Problems in Engineering. 2014. V. 2014. 12 p.
Gray M. Toeplitz and circulant matrices: a review // Foundations and Trends in Communications and Information Theory. 2006. V. 2. No. 3. P. 155-239.
 Characterization of linear transformations defined by finite field hadamard matrices and circulant matrices | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/2

Characterization of linear transformations defined by finite field hadamard matrices and circulant matrices | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/2