Change Browser!
Change Browser
On homogeneous matroids and block-schemes
This research is devoted to access control through ideal perfect secret sharing schemes and matroids. A matroid is homogeneous if all its circuits have equal cardinality, but possibly not all subsets of this cardinality are circuits. A linkage of such matroids with block-schemes including Steiner triple is revealed. It is proved that any matroid, in which co-hyperplanes are the Steiner triples, is homogeneous connected and separating if its cardinality is not less than seven. It is also proved that block-scheme, in which each pair of different elements appears in a single block, specifies the co-hyperplanes of a homogeneous connected separating matroid. Some hypotheses for further research are presented.
Keywords
схемы разделения секрета,
однородные матроиды,
блок-схемы,
циклы,
secret sharing schemes,
homogeneous matroids,
block-schemes,
circuitsAuthors
Medvedev N. V. | Ural State University of Railways | itcrypt@gmail.com |
Titov S. S. | Ural State University of Railways | stitov@usaaa.ru |
Всего: 2
References
Введение в криптографию / под общ. ред. В. В. Ященко. СПб.: Питер, 2001.
Парватов Н. Г. Совершенные схемы разделения секрета // Прикладная дискретная математика. 2008. №2(2). С. 50-57.
Блейкли Г. Р., Кабатянский Г. А. Обобщенные идеальные схемы, разделяющие секрет, и матроиды // Проблемы передачи информации. 1997. Т. 33. №3. С. 102-110.
Болотова Е. А., Коновалова С. С., Титов С. С. Свойства решеток разграничения доступа, совершенные шифры и схемы разделения секрета // Проблемы безопасности и противод. терроризму: материалы IV Междунар. науч. конф. М.: МЦНМО, 2009. Т. 2. С. 71-86.
Welsh D. J. A. Matroid Theory. Academic Press, 1976.
Marti-Farre J. and Padro C. Secret sharing schemes on sparse homogeneous access structures with rank three // Electronic J. Combinatorics. 2004. No. 1(1). Research Paper 72. 16p.
Singer J. A theorem in finite projective geometry and some applications to number theory // Trans. Amer. Math. 1938. No. 17. P. 356-372.
Холл М. Комбинаторика. М.: Мир, 1970.
Theory of Matroids. Encyclopedia of Mathematics and its Applications / ed. N. White. Cambrige University Press, 1986. V. 26.
On homogeneous matroids and block-schemes | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/7