On maximal metrically regular sets | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/8

On maximal metrically regular sets

Metrically regular subsets of the Boolean cube are studied. It is proved that the metrically regular sets of maximal cardinality have covering radius 1 and are the complements of minimal covering codes of radius 1. A lower bound of the sum of cardinalities of two metrically regular sets, each being the metric complement of the other, is obtained. We conjecture that any minimal covering code is a metrically regular set.

Download file
Counter downloads: 142

Keywords

метрически регулярное множество, метрическое дополнение, минимальный покрывающий код, metrically regular set, metric complement, minimal covering code

Authors

NameOrganizationE-mail
Oblaukhov A. K.Novosibirsk State Universityoblaukhov@gmail.com
Всего: 1

References

Облаухов А. К. О метрическом дополнении подпространств булева куба // Дискретный анализ и исследование операций. 2016. Т. 23. №3. С. 93-106.
Tokareva N. Duality between bent functions and affine functions // Discr. Math. 2012. V. 312. No. 3. P. 666-670.
Cohen G. et al. Covering Codes. Elsevier, 1997. V. 54.
Graham R. L. and Sloane N. On the covering radius of codes // IEEE Trans. Inform. Theory. 1985. V.31. No. 3. P. 385-401.
Cohen G., Lobstein A, and Sloane N. Further results on the covering radius of codes // IEEE Trans. Inform. Theory. 1986. V.32. No. 5. P. 680-694.
 On maximal metrically regular sets | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/8

On maximal metrically regular sets | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/8