Hyperelliptic curves, Cartier - Manin matrices and Legendre polynomials | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/11

Hyperelliptic curves, Cartier - Manin matrices and Legendre polynomials

We investigate the hyperelliptic curves of the form C1 : y2 = x2g+1 + axg+1 + bx and C2 : y2 = x2g+2 + axg+1 + b over the finite field Fq, q = pn, p > 2. We transform these curves to the form C1)P : y2 = x2g+1 - 2pxg+1 + x and C2,p : y2 = x2g+2 - 2pxg+1 + 1 and prove that the coefficients of corresponding Cartier - Manin matrices are Legendre polynomials. As a consequence, the matrices are centrosym-metric and, therefore, it's enough to compute a half of coefficients to compute the matrix. Moreover, they are equivalent to block-diagonal matrices under transformation of the form S(p)WS-1. In the case of gcd(p,g) = 1, the matrices are monomial, and we prove that characteristic polynomial of the Frobenius endomorphism x(^) (mod p) can be found in factored form in terms of Legendre polynomials by using permutation attached to the monomial matrix. As an application of our results, we list all the possible polynomials x(A) (mod p) for the case of gcd(p,g) = 1, g E {1,..., 7} and the curve C1 is over Fp or Fp2.

Download file
Counter downloads: 194

Keywords

hyperelliptic curve cryptography, Cartier-Manin matrix, Legendre polynomials, криптография гиперэллиптической кривой, матрица Картье-Манина, полиномы Лежандра

Authors

NameOrganizationE-mail
Novoselov S. A.Baltic Federal University I. Kantsnovoselov@kantiana.ru
Всего: 1

References

Koblitz N. Hyperelliptic cryptosystems. J. Cryptology, 1989, vol. 1, no.3, pp. 139-150.
Manin Y. I. O matritse Khasse - Vitta algebraicheskoy krivoy [The Hasse - Witt matrix of an algebraic curve]. Izv. Akad. Nauk USSR, Ser. Mat., 1961, vol.25, no. 1, pp. 153-172. (in Russian)
Bostan A., Gaudry P., and Schost; E. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier - Manin operator. SIAM J. Comput., 2007, vol. 36, no. 6, pp. 1777-1806.
Harvey D. and Sutherland A.V. Hasse - Witt matrices of hyperelliptic curves in average polynomial time. LMS J. Comput. Math., 2014, vol.17, no. A, pp. 257-273.
Yui N. Jacobi quartics, Legendre polynomials and formal groups. Lecture Notes in Mathematics, 1988, vol. 1326, pp. 182-215.
Miller L. The Hasse - Witt matrix of special projective varieties. Pacific J. Math., 1972, vol. 43, no. 2, pp. 443-455.
Brillhart J. and Morton P. Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial. J. Number Theory, 2004, vol. 106, no. 1, pp. 79-111.
Carlitz L. Congruence properties of the polynomials of Hermite, Laguerre and Legendre. Mathematische Zeitschrift, 1953, vol. 59, pp. 474-483.
Yui N. On the Jacobian varieties of hyperelliptic curves over fields of characteristic p > 2. J. Algebra, 1978, vol.52, no.2, pp.378-410.
 Hyperelliptic curves, Cartier - Manin matrices and Legendre polynomials | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/11

Hyperelliptic curves, Cartier - Manin matrices and Legendre polynomials | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/11