A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/13

A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables

A vector Boolean function F from F^ to is called almost perfect nonlinear (APN) if equation F(x) ф F(x ф a) = 6 has at most 2 solutions for all vectors a, 6 E Fn, where a is non-zero. Two functions F and G are called differentially equivalent if Ba(F) = Ba(G) for all a E Fn, where Ba(F) = {F(x) ф F(x ф a) : x E F^}. A classification of differentially non-equivalent quadratic APN function in 5 and 6 variables is obtained. We prove that, for a quadratic APN function F in n variables, n ^ 6, all differentially equivalent to F quadratic functions are represented as F ф A, where A is an affine function.

Download file
Counter downloads: 154

Keywords

APN-функции, дифференциальная эквивалентность, линейный спектр, APN functions, differential equivalence, linear spectrum

Authors

NameOrganizationE-mail
Gorodilova A. A.Soboleva Institute of Mathematics of the SB RAS; Novosibirsk State Universitygorodilova@math.nsc.ru
Всего: 1

References

Глухов М. М. О приближении дискретных функций линейными функциями // Математические вопросы криптографии. 2016. Т. 7. Вып. 4. С. 29-50.
Городилова А. А. О дифференциальной эквивалентности квадратичных APN-функций // Прикладная дискретная математика. Приложение. 2016. №9. С. 21-24. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000547586
Городилова А. А. Линейный спектр квадратичных APN-функций // Прикладная дискретная математика. 2016. №4(34). С. 5-16. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000553865
 A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/13

A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/13