On some properties of known isometric mappings of the set of bent functions | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/17

On some properties of known isometric mappings of the set of bent functions

We prove that there doesn't exist an isometry on the set of all Boolean functions in 2k variables which acts on the set of bent functions by assigning the dual bent functions. We state the affine equivalence of a bent function and its dual bent function in the case of small number of variables. Keywords: Boolean function, bent function, isometry, dual bent function. Miloserdov A. V. PERMUTATION BINOMIALS OVER FINITE FIELDS. CONDITIONS OF EXISTENCE. Let 1 ^ j < i ^ 2n - 1, 1 ^ k ^ 2n - 1, a is a primitive element of the field F2n. It is proved that: 1) if a function f : F2n ^ F2n of the form f (y) = akyi + yj is one-to-one function, then gcd(i - j, 2n - 1) doesn't divide gcd(k, 2n - 1); 2) if 2n - 1 is prime, then one-to-one function f : F2n ^ F2n of the form f (x) = akxi + xj doesn't exist; 3) if n is a composite number, then there is one-to-one function f : F2n ^ F2n n of the form f (x) = akxi+xj; 4) if 2n - 1 has a divisor d < --- - 1, then there is one-to- 2 log2 (n) one function f : F2n ^ F2n of the form f (y) = ayi + yj for some a G F2n, 0 < j < i < 2n - 1.

Download file
Counter downloads: 186

Keywords

булева функция, бент-функция, изометричное отображение булевых функций, дуальная бент-функция, polynomial representation, permutation polynomials, permutation binomials

Authors

NameOrganizationE-mail
Kutsenko A. V.Novosibirsk State UniversityAlexandrKutsenko@bk.ru
Всего: 1

References

Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V.20. No.3. P. 300-305.
Carlet C., Danielson L. E., Parker M. G., and Sole P. Self dual bent functions // Int. J. Inform. Coding Theory. 2010. No. 1. P. 384-399.
Carlet C. Boolean functions for cryptography and error-correcting codes // Boolean Models and Methods in Mathematics, Computer Science, and Engineering. N.Y.: Cambridge Univ. Press, 2010. P. 257-397.
Токарева Н. Н. Группа автоморфизмов множества бент-функций // Дискретная математика. 2010. Т. 22. №4. С. 34-42.
 On some properties of known isometric mappings of the set of bent functions | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/17

On some properties of known isometric mappings of the set of bent functions | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/17