Permutation binomials over finite fields. Conditions of existence | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/18

Permutation binomials over finite fields. Conditions of existence

Let 1 ^ j < i ^ 2n - 1, 1 ^ k ^ 2n - 1, a is a primitive element of the field F2n. It is proved that: 1) if a function f : F2n ^ F2n of the form f (y) = akyi + yj is one-to-one function, then gcd(i - j, 2n - 1) doesn't divide gcd(k, 2n - 1); 2) if 2n - 1 is prime, then one-to-one function f : F2n ^ F2n of the form f (x) = akxi + xj doesn't exist; 3) if n is a composite number, then there is one-to-one function f : F2n ^ F2n n of the form f (x) = akxi+xj; 4) if 2n - 1 has a divisor d < --- - 1, then there is one-to- 2 log2 (n) one function f : F2n ^ F2n of the form f (y) = ayi + yj for some a G F2n, 0 < j < i < 2n - 1.

Download file
Counter downloads: 156

Keywords

полиномиальное представление, взаимно однозначные функции, биномиальные функции, polynomial representation, permutation polynomials, permutation binomials

Authors

NameOrganizationE-mail
Miloserdov A. V.Novosibirsk State Universityamiloserdov6@gmail.com
Всего: 1

References

Shallue C. J. Permutation Polynomials of Finite Fields. Honours Thesis. Monash University, 2012.
Masuda A. M. and Zieve M. E. Permutation binomials over finite Ffeld // Trans. AMS. 2009. V.361. No. 8. P. 4169-4180.
Милосердов А. В. Комбинаторные свойства полиномиального представления булевой функции. Выпускная квалификационная работа бакалавра. Новосибирск: НГУ, 2017.
 Permutation binomials over finite fields. Conditions of existence | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/18

Permutation binomials over finite fields. Conditions of existence | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/18