Permutation binomials over finite fields. Conditions of existence
Let 1 ^ j < i ^ 2n - 1, 1 ^ k ^ 2n - 1, a is a primitive element of the field F2n. It is proved that: 1) if a function f : F2n ^ F2n of the form f (y) = akyi + yj is one-to-one function, then gcd(i - j, 2n - 1) doesn't divide gcd(k, 2n - 1); 2) if 2n - 1 is prime, then one-to-one function f : F2n ^ F2n of the form f (x) = akxi + xj doesn't exist; 3) if n is a composite number, then there is one-to-one function f : F2n ^ F2n n of the form f (x) = akxi+xj; 4) if 2n - 1 has a divisor d < --- - 1, then there is one-to- 2 log2 (n) one function f : F2n ^ F2n of the form f (y) = ayi + yj for some a G F2n, 0 < j < i < 2n - 1.
Keywords
полиномиальное представление, взаимно однозначные функции, биномиальные функции, polynomial representation, permutation polynomials, permutation binomialsAuthors
Name | Organization | |
Miloserdov A. V. | Novosibirsk State University | amiloserdov6@gmail.com |
References
