Refined asymptotic estimates for the number of (n, m, k)-resilient boolean mappings
For linear combinations of coordinate functions of a random Boolean mapping, a local limit theorem for the distribution of subsets of their spectral coefficients is improved. By means of this theorem, we obtain an asymptotic formula for the |R (m, n, k)| - the number of (n, m, k)-resilient functions as n ^ ro, m G n (1 - e) / n \ G {1, 2, 3, 4} and k ^ -Ц-- for any 0 < e < 0, k = О -- : 5 + 2log2 n Vlnnz log2|R (m, n, k)| ~ m2n - (2m - 1) (^ (n) +log2 У|е(II)) + + (2 · 3m-2 - 1) Ind {m =1} E (Л. s=0 \ sJ Also, we obtain upper and lower asymptotic estimates for the number |R (m, n, k)| as n ^ ro, k (5 + 2 log2 n) + 5m ^ n (1 - e) for any 0 < e < 1: -e1 (m - 1)£ (n) < log2 |R (m,n,k)|-m2n+(2m - ^(^(n) + log2 ^Е (n)) < < e2 (m - 2) (2m - 1) E + E for any e^ (0 < e1,e2 < 1). s=0 \ s/ s=0 \ s/
Keywords
случайное двоичное отображение, локальная предельная теорема, спектральные коэффициенты, устойчивые вектор-функции, эластичные вектор-функции, random binary mapping, local limit theorem, spectral coefficient, resilient vector Boolean functionAuthors
Name | Organization | |
Pankov K. N. | Moscow State Technical University of Radio Engineering; Moscow Technical University of Communication and Informatics | k.n.pankov@gmail.com |
References
