Some decompositions for quadratic boolean threshold functions
Arbitrary quadratic Boolean threshold functions f defined by a quadratic form w(xi,..., = e(xi,..., xm) + a(xm+1,..., and a threshold t are considered together with the quadratic forms e and a defined by the corresponding constant matrices 1m and an-m. We propose a criterion for existence of a non-trivial decomposition of such a function f, namely: such a decomposition exists if and only if any of the following conditions holds: 1) t < m2 and there exists j in {1,..., n - m} such that |_tje + a(j - 1)2 ^ t < |Y|e; 2) t > m2 and there exist i in {1,..., m} and j in {1,..., n - m} such that max{(i - 1)2 + a(n - m)2,m2 + a(j - 1)2} ^ t < i2 + aj2; 3) t > m2 and there exist i in {1,..., m}, j and l in {1,..., n - m} such that j < l and max{(i - 1)2 + a(l - 1)2, m2 + a(j - 1)2} ^ t < min{al2, i2 + aj2}, where |_tje = max{z : z = e(x),x G {0,1}m,z ^ t}, [t|e = min{z : z = e(x),x G {0,1}m, z > t}.
Keywords
функциональная разделимость, квадратичные булевы пороговые функции, quadratic Boolean threshold functions, decompositionAuthors
Name | Organization | |
Shurupov A.N. | Moscow Technological University | ashurupov@mail.ru |
References
