Structure of local primitive digraphs | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/35

Structure of local primitive digraphs

For vertices i and j in a digraph Г, this digraph is said to be i x j-primitive if there exists an integer y such that, for any t ^ y, there is a path in Г of length t from i to j; in this case, the least y is called i x j-exponent of Г. The properties of the i x j-primitive digraph Г structure, used for calculation of the digraph i x j-exponent, are investigated. It is shown that i x j-primitive digraph Г is strongly connected or the strongly connected components in it are connected to each other with the some simple paths in which all the vertices except, perhaps, initial and final ones are acyclic. The set of these components is divided into k + 1 levels according to the distance from vertex i, namely the 0-th level contains the strongly connected component with i, the k-th level contains the strongly connected component with j, the t-th level contains the strongly connected components which don't belong to the previous t - 1 levels and are connected with some components on (t - 1)-th level, t = 1,..., k - 1. Also, it is shown that, for the transformation of the state set of the cryptographic alternating step generator constructed on the base of linear feedback shift registers of lengths n, m and r, the i x j-primitive mixing digraph, for each i E {1,..., m} and j E {m + n, m + n + r}, consists of three strongly connected components divided into two levels.

Download file
Counter downloads: 156

Keywords

локально примитивный орграф, компонента сильной связности, перемешивающий граф, генератор с перемежающимся шагом, local primitive digraph, strongly connected component, mixing graph, alternating step generator

Authors

NameOrganizationE-mail
Kyazhin S. N.National Research Nuclear University "MEPhI"s.kyazhin@kaf42.ru
Всего: 1

References

Кяжин С. Н. О применении условий локальной примитивности и оценок локальных экспонентов орграфов // Прикладная дискретная математика. 2016. №4(34). С. 81-98. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000553856
Кяжин С. Н., Фомичев В. М. Локальная примитивность графов и неотрицательных матриц // Прикладная дискретная математика. 2014. №3(25). С. 68-80. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000488547
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. 424 с.
Кяжин С. Н., Фомичев В. М. Перемешивающие свойства двухкаскадных генераторов // Прикладная дискретная математика. Приложение. 2016. №9. С. 60-62. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000547646
 Structure of local primitive digraphs | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/35

Structure of local primitive digraphs | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/35