A version of the Diffie - Hellman protocol based on using additional hidden factors | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/36

A version of the Diffie - Hellman protocol based on using additional hidden factors

We give a version of the classical Diffie - Hellman protocol that uses hidden factors from subgroups of the multiplicative group of the corresponding finite field. To compute a secret data of the protocol, one needs not only to solve the underlined discrete logarithm problem, but simultaneously to compute the orders of some elements of the multiplicative group.

Download file
Counter downloads: 203

Keywords

криптография, протокол Диффи-Хеллмана, скрытые множители, cryptography, Diffie-Hellman protocol, hidden factors

Authors

NameOrganizationE-mail
Obzor A. A.Dostoevsky Omsk State University
Всего: 1

References

Романьков В. А. Новая семантически стойкая система шифрования с открытым ключом на базе RSA // Прикладная дискретная математика. 2015. №3 (29). С. 32-40. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000513294
Roman'kov V.A. New probabilistic public-key encryption based on the RSA cryptosystem // Groups, Complexity, Cryptology. 2015. V. 7. No. 2. P. 153-156.
Roman'kov V. A. How to make RSA and some other encryptions probabilistic. arXiv: 1603.0203v1 [cs: CR] 7 Mar 2016. P. 1-7.
Романьков В. А. Вариант семантически стойкого шифрования на базе RSA // Вестник Омского ун-та. 2016. №3(81). С. 7-9.
Menezes A., van Oorschot P. C., and Vanstone S. A. Handbook of Applied Cryptography. Boca Raton, London, New York, Washington: CRC Press, 1996. 816 p.
Романьков В. А. Введение в криптографию. М.: Форум, 2012. 239с.
Романьков В. А. Алгебраическая криптография. Омск: ОмГУ, 2013. 135 с.
 A version of the Diffie - Hellman protocol based on using additional hidden factors | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/36

A version of the Diffie - Hellman protocol based on using additional hidden factors | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/36