Upper and lower bounds of the number of additional arcs in a minimal edge 1-extension of oriented path | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/52

Upper and lower bounds of the number of additional arcs in a minimal edge 1-extension of oriented path

The following upper and lower bounds of the number of additional arcs ec(Pn) in a minimal edge 1-extension of an oriented path Pn are obtained: 1) for Pn which has ends of different types and is not isomorphic to Hamiltonian path or to orientation consisting of alternating sources and sinks, |~n/6] + 1 ^ ec(Pn) ^ n + 1; 2) for Pn with ends of equal types, |~n/4] +1 ^ ec(Pn) ^ n + 1. Keywords: minimal edge extension, path orientation, fault-tolerance. Abrosimov M. B, Razumovsky P. V. ABOUT GENERATION OF NON-ISOMOR-PHIC VERTEX k-COLORINGS. In this paper, we study the generation problem for non-isomorphic vertex and edge k-colorings of a given graph. An algorithm for generating all the non-isomorphic vertex k-colorings of a graph by the Reed - Faradzhev method without using an isomorphism testing technique is suggested. The problem of generating edge k-colorings is reduced to the problem of generating vertex k-colorings.

Download file
Counter downloads: 192

Keywords

минимальное рёберное 1-расширение, ориентация цепи, отказоустойчивость, graph, isomorphism, coloring, vertex coloring

Authors

NameOrganizationE-mail
Abrosimov M. B.Chernyshevsky Saratov State Universitymic@rambler.ru
Modenova O. V.Scientific and educational center "Erudite"oginiel@rambler.ru
Всего: 2

References

Hayes J. P. A graph model for fault-tolerant computing system // IEEE Trans. Comput. 1976. V.C25. No. 9. P. 875-884.
Harary F. and Hayes J. P. Edge fault tolerance in graphs // Networks. 1993. V. 23. P. 135-142.
Абросимов М. Б. Графовые модели отказоустойчивости. Саратов : Изд-во Сарат. ун-та, 2012. 192 с.
Абросимов М. Б. О сложности некоторых задач, связанных с расширениями графов // Матем. заметки. 2010. Т. 88. Вып. 5. С. 643-650.
Абросимов М. Б., Моденова О. В. Характеризация орграфов с малым числом дополнительных дуг минимального вершинного 1-расширения // Изв. Сарат. ун-та. Нов. сер. 2013. Т. 13. Сер. Математика. Механика. Информатика. Вып. 2. Ч.2. С. 3-9.
Абросимов М. Б., Моденова О. В. Характеризация орграфов с тремя дополнительными дугами в минимальном вершинном 1-расширении // Прикладная дискретная математика. 2013. №3. С. 68-75.
 Upper and lower bounds of the number of additional arcs in a minimal edge 1-extension of oriented path | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/52

Upper and lower bounds of the number of additional arcs in a minimal edge 1-extension of oriented path | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/52